You have minutes to complete the quiz. Please show all work, and then circle your answer.

1. Fill in the blanks, to complete the statement of Theorem 2:

Theorem 2: The reduced echelon form of a linear system has three possible cases

(a) The system has zero solutions if it contains a row [0...0] it is consistent and has a pivot in every coeff. column.

it is consistent and (c) The system has <u>o-many</u> solutions if <u>if some</u> colf column does

2. For each of the cases above, write down an augmented matrix with the corresponding number of solutions.

(b) unique
$$\begin{cases} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & 3 \\ 0 & 0 & 1 & | & 9 \end{cases}$$

Name:	\
T. COLLEC.	

Section:

3. Write down the formal definition of $\mathrm{Span}\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}.$

the set of
$$\vec{b}$$
 s.t. $\vec{b} = c_1 \cdot \vec{V_1} + c_2 \cdot \vec{V_2} + c_3 \cdot \vec{V_3}$
Box some c_1, c_2, c_3 in \vec{R}

4. What is the graphical meaning of $\operatorname{Span}\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3\}$?

5. Fill in the blanks to state Theorem 4 in terms of pivots.

Theorem 4: The columns of an $m \times n$ matrix A span \mathbb{R}^m

6. Write down a 3×3 matrix A whose columns span \mathbb{R}^3 .

$$\begin{bmatrix}
1 & 2 & 0 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{bmatrix}$$

7. Write down a 3×3 matrix A whose columns do not span \mathbb{R}^3 .

8. Can you write down a 2×3 matrix A whose columns span \mathbb{R}^{2} ? Justify your answer.

9. Can you write down a 3×2 matrix A whose columns span \mathbb{R}^3 ? Justify your answer.

Name: _____

Section:

10. Write down the formal definition of Linear **Dependence** of vectors $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3\}$.

$$\{U_1, U_2, U_3\}$$
 is linearly Dependent
If there are C_1, C_2, C_3 in IR NOT ale O
So that
 $C_1 \cdot V_1 + C_2 \cdot V_2 + C_3 \cdot V_3 = 0$

11. Give an example of a non-trivial dependence relation between $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3$.

Use this dependence relation to explain the graphical meaning of "Linear **Dependence**".

$$2\vec{V_1} + 6\vec{V_2} - \vec{V_3} = \vec{0}$$

solving for $\vec{V_3} = 2\vec{V_1} + 6\vec{V_2}$
shows that $\vec{V_3}$ is in Span $\{\vec{V_1}, \vec{V_2}\}$.

12. What is the graphical meaning of the set $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3\}$ being Linearly **Independent**?

If there is NO Nontrivial dependence relation Then NO Vi is in the span of the other vector.

Section: _

13. Suppose that $x_1\vec{\mathbf{v}}_{\$} + x_2\vec{\mathbf{v}}_2 + x_3\vec{\mathbf{v}}_3 = \vec{\mathbf{0}}$ has a unique solution. Is $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3\}$ Linearly **Independent**?

per yes.

X1=X2=X3=0 is always a Solution

So the only dependence relation is the trivial one.

so the vectors are linearly independent

14. Suppose that $x_1\vec{\mathbf{v}}_{\parallel} + x_2\vec{\mathbf{v}}_2 + x_3\vec{\mathbf{v}}_3 = \vec{\mathbf{0}}$ has infinitely many solutions. Is $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3\}$ Linearly Independent?

so-many solutions No.

=) has some wonthivial solution

=) there is a nontrivial dependence relation

15. Does $x_1\vec{\mathbf{v}}_{\parallel} + x_2\vec{\mathbf{v}}_2 + x_3\vec{\mathbf{v}}_3 = \vec{\mathbf{0}}$ always have a solution? Why or why not?

yes.
$$0.\vec{V}_1 + 0.\vec{V}_2 + 0.\vec{V}_3$$

= 0 + 5 +5

So \$x_1=x_2=x_3=0 is always a solution.